Fonctions et Applications

Gratuit
Maths Terminale C

Cette page contient des vidéos sur la restriction de fonctions, l’égalité des fonctions, sur comment montrer qu’une fonction est une application, comment calculer le domaine de définition de la somme, de la différence, du produit et du quotient de deux fonctions, comment montrer qu’une application est injective, surjective ou bijective, comment ressortir les relations entre les fonctions associées et comment déduire le tracé des courbes de fonctions associées.

Vous trouverez également une fiche d’exercices et un quizz pour préparer vos examens.

N’hésitez pas à nous laisser vos appréciations en commentaires.

Partagez avec:


Eléments du thème

  • Thèmes 13
  • Quiz 0
  • Durée 2 heures
  • Niveau Première C et D
  • Langue Français
  • Étudiantes 4
  • Évaluations Oui
  • Fonctions et applications 11

    • Thème1.1
      Explication sur la notion de restriction de fonctions 10 min
    • Thème1.2
      Activité 2 sur la restriction de fonctions 06 min
    • Thème1.3
      Montrer que deux fonctions sont égales 07 min
    • Thème1.4
      Montrer qu’une fonction est une application 06 min
    • Thème1.5
      Déterminer le domaine de définition de la somme, de la différence, du produit et du quotient de deux fonctions 10 min
    • Thème1.6
      Déterminer le Df de la composée de deux fonctions et calculer la composée de 2 fonctions
    • Thème1.7
      Montrer qu’une application est injective, surjective ou bijective 10 min
    • Thème1.8
      Comment construire les courbes des fonctions g(x) = f(x-a)+b, h(x) = f(-x) et i(x) = -f(-x) 09 min
    • Thème1.9
      Comment construire les courbes des fonctions f(|x|) et |f(x)| 07 min
    • Thème1.10
      Explications sur les notions d’applications injectives, surjectives, bijectives 08 min
    • Thème1.11
      Interprétation graphique des fonctions associées 03 min
  • QUIZZ 1

    • Thème2.1
      Fonctions et applications
  • Travaux Dirigés 1

    • Thème3.1
      TD sur les Fonctions et applications
Gratuit

Laissez un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *